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Abstract—A performance vs. practicality trade-off exists be-
tween user-level threading techniques. The community has settled
mostly on a black-and-white perspective; fully fledged threads
assume that suspension is imminent and incur overheads when
suspension does not take place, and run-to-completion threads
are more lightweight but less practical since they cannot suspend.
Gray areas exist, however, whereby threads can start with mini-
mal capabilities and then can be dynamically promoted to acquire
additional capabilities when needed. This paper investigates the
full spectrum of threading techniques from a performance vs.
practicality trade-off perspective on modern multicore and many-
core systems. Our results indicate that achieving the best trade-off
highly depends on the suspension likelihood; dynamic promotion
is more appropriate when suspension is unlikely and represents
a solid replacement for run to completion, thanks to its lower
programming constraints, while fully fledged threads remain the
technique of choice when suspension likelihood is high.

I. INTRODUCTION

Threads of execution are one of the major forms of
concurrency within the same shared address space, not only
on high-performance computing (HPC) systems but also on
servers and embedded systems. Because of their heavyweight
and rigid nature, OS-level threads have been criticized as being
inadequate for fine-grained concurrency to efficiently utilize
the modern parallel hardware. As a result, user-level threads
have been widely adopted as an alternative for lightweight
concurrent execution. Their lightweight nature is achieved by
decoupling them from the OS intervention and satisfying their
functional requirements with mostly user-space operations.

Perhaps the most widely known form of user-level threading
is the one that matches closely the capabilities of OS-level
threads; that is, a thread is an execution unit that can be
dynamically created and scheduled and can also yield control
and resume later (i.e., supporting the suspension capability).
We refer to such a thread as fully fledged (or Full for brevity),
since it supports all capabilities expected from a user-level
thread. Given its wide scope of applicability, numerous parallel
programming systems and libraries—including Cilk [1], Intel
CilkPlus [2], Qthreads [3], OmpSs [4], MassiveThreads [5],
and Argobots [6]—adopted this technique. In order to correctly
support the suspension capability, providing a private stack
space to a newly spawned thread and performing the necessary
context switching operations are mandatory.

Suspension is an important capability that allows, for
instance, asynchrony to be achieved when waiting on I/O
and communication operations and when synchronizing with

other threads. The associated stack and context management
operations, however, incur costs that can be significant for
fine-grained threads. To avoid these costs, some systems, such
as Filaments [7] and Argobots [6], offer the possibility of
spawning a thread without requiring the suspension capability.
Since it cannot suspend, such an execution unit must run to
completion (we refer to this technique as RtC) and execute on
the stack of the caller. By eliminating the suspension capability
overheads, RtC can be significantly lighter than Full, but it
is less practical. To leverage this technique, the programmer
would use a priori knowledge about the behavior of the unit
to infer the possibility of suspension. Doing so is not always
possible, however. For instance, if two threads compete for a
lock acquisition, the winner would proceed without suspending,
while the loser would get suspended. As a result, any possibility
of suspension would compel the programmer to avoid RtC even
if the chances of suspension at runtime were low or nonexistent.

Full and RtC have opposing trade-offs with respect to
performance and practicality; Full is heavier but is fully capable,
while RtC is lighter but is less practical. There exist alternative
methods, however, whereby threads can start with minimal
capabilities and later acquire additional capabilities if needed.
We refer to such methods as exploiting dynamic promotion
and note that they potentially offer different trade-offs from
those of Full and RtC. Although hints to dynamic promotion-
type threads can be found in the literature [8], [9], [10], little
insight into their performance and practicality aspects has
been provided. In particular, the circumstances where dynamic
promotion-based methods are more suitable than Full and RtC
and whether they can supersede them remain open questions.

This paper fills this gap with an in-depth investigation of
the fundamental costs and capabilities of the full spectrum
of techniques from Full down to RtC. By understanding
the fundamental differences between them, we systematically
depart from Full and incrementally trim down costs toward RtC.
This optimization process successfully locates intermediate
threading techniques that have reduced start-up costs and
exploits dynamic promotion when additional capabilities are
needed. More specifically, we make the following contributions:

1. We provide an in-depth analysis at the instruction and
cache levels of the full spectrum of threading techniques from
Full through RtC. We also contribute two new techniques
to the spectrum: return on completion and stack separation
(Section III) that, to our knowledge, are missing from the
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literature. Furthermore, our analysis includes not only the per-
formance aspect of these techniques but also their programming
constraints, in order to cover the practicality aspect.

2. We demonstrate that achieving the best trade-off highly
depends on the suspension likelihood. Dynamic promotion is
more appropriate when suspension is unlikely and represents
a solid replacement for RtC, thanks to its lower programming
constraints, whereas Full remains the technique of choice when
suspension is likely.

3. We provide highly optimized implementations of these
techniques in the same production threading library, Argob-
ots [6], which was also integrated as the substrate threading
layer of an OpenMP runtime.

4. We evaluate the performance characteristics of all the
methods with representative real-world codes from N-body,
graph analytics, and machine learning fields. This study also
covers a range of processor architectures: Intel Haswell, Intel
Knights Landing, and ARM 64 processors.

Scope of this work.
This paper is not an attempt to revive the old threads vs.

event debate [11]. Although running to completion is the mode
of operation in event-driven programming models, our target
is traditional threading models. That is, on encountering a
blocking operation, we do not require the programmer to rip
the code [12] and register event handlers as done in event-
driven programming. Furthermore, the trade-off between Full
and RtC can also be encountered in the OS context, such as
the distinction between work queues and tasklets in the Linux
kernel [13]. Our work targets user space applications and leaves
the kernel space out of the scope. All the techniques described
in this paper are adequate for building generic threading
libraries because they do not rely on compiler modifications,
special compiler extensions, kernel modifications, or source-to-
source translations.

II. BACKGROUND

Managing user-level threads (ULTs) shares many similarities
with how language stack frames are managed, which include
register saving and stack pointer manipulation. The major
difference is that on encountering a thread create or spawn
call, instead of an immediate function call a thread descriptor
and potentially a separate private stack are first created. Then,
the execution order of the parent and child threads would
depend on the scheduling policy. Here, we assume parent-first
scheduling; that is, on encountering a thread creation call,
the child thread will be pushed to a thread pool while the
parent thread continues its execution. Although some of the
methods that will be presented here are applicable to child-first
scheduling [14], some exceptions and constraints exist and
will be covered in Section III-F. The descriptions below also
assume a scheduler that pulls work units from thread pools to
be executed. Such a scheduler has a private stack space and
runs on an OS-level thread, a scheduling model adopted by
most threading packages. In the following, we describe the
details of Full and RtC as commonly implemented by many
user-level threading packages.

1 void scheduler() {
2 while (true)
3 if (thread_desc *thd <- pop_pool())
4 thd->f(thd->arg) // schedule thd.
5 }

Fig. 1: Pseudocode of RtC. Real schedulers might sleep in
order to avoid busy loop and have a branch to finish.
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Fig. 2: Flow of fork-join (RtC).

A. Run-to-Completion Threads

At creation time, RtC requires only that a thread descriptor be
allocated, which includes a function pointer and its arguments.
Later, the created ULT gets pulled by the scheduler from a
thread pool and called. Figure 1 shows the pseudocode of
a scheduler executing an RtC thread. The scheduler runs on
an OS-level thread and pulls ULTs from a pool and executes
them by calling their function pointers with their arguments.
The ULT called on top of the scheduler stack returns after
completion in a similar way to a sequential function call
(Figure 2). The overheads of managing RtC threads over directly
calling function pointers lie in the memory management of their
thread descriptors and the scheduling costs (e.g., pool-related
operations). These overheads are minimal costs to support
concurrency, and thus RtC is considered as the lower bound
in terms of thread management costs.

RtC sacrifices the suspension feature because of several
reasons. When a ULT yields, it is supposed to return to
the calling scheduler. Restoring the scheduler requires its
stack pointer, which can be obtained only with difficulty.
Without compiler help, it is hard to retrieve a stack pointer
that a compiler automatically saves on the call stack. Callee-
saved registers are also difficult to extract from the call stack.
Moreover, even if these values could be restored, resuming
the execution of the scheduler would grow over the stack
frame of the child ULT, which is still alive. Although one
can move the child’s stack to another place, it is unsuitable
for building general threading libraries because it invalidates
all addresses pointing to the call stack of the child [15].
A scheduler, therefore, cannot increase the call stack (e.g.,
call a function) to avoid collapsing the child’s stack, making
launching another ULT impossible.

B. Fully Fledged Threads

Full, on the other hand, has all the threading capabilities
expected from a thread of execution, including the suspension
capability. This allows a ULT to yield execution when it is
waiting on an event (e.g., completion of an I/O or a network
operation) or on synchronization (e.g., critical section, barrier,
or joining other threads). By yielding, other units can be
scheduled, improving the overall system efficiency instead
of wasting CPU time.



1 void switch_ctx(ctx_t **self_ctx, ctx_t *target_ctx) {
2 Push callee-saved registers // save the current context.
3 Push the parent instruction address
4 *self_ctx <- stack_pointer
5 stack_pointer <- target_ctx // restore the target context.
6 Pop the target instrcution address to regA // regA is caller-saved.
7 Pop callee-saved registers
8 Jump to *regA
9 }

Fig. 3: Pseudo assembly code of a context switch.

1 void start_ctx(ctx_t **self_ctx, void *stack, void (*f)(void *),
2 void *arg) {
3 Push callee-saved registers // save the current context.
4 Push the parent instruction address
5 *self_ctx <- stack_pointer
6 stack_pointer <- stack // start f on top of stack.
7 f(arg)
8 }
9 void end_ctx(ctx_t *target_ctx) {

10 stack_pointer <- target_ctx // restore the target context.
11 Pop the target instrcution address to regA // regA is caller-saved.
12 Pop callee-saved registers
13 Jump to *regA
14 }

Fig. 4: Pseudo assembly code to start and end a context.

Before discussing the performance disparity between Full
and RtC, we will first describe the basics of a user-level context
switch, which is a key aspect of implementing suspension.
Such a switch can explicitly handle an execution state apart
from sequential order, which is often called a function context
or simply a context. Contexts are saved and restored by
manipulating the call stack and values saved in the hardware
registers.1

Figure 3 describes an implementation of a user-level context
switch typically found in practice, such as those in the
Boost C++ Libraries [16]. Two pointers are used by switch_ctx

as arguments: self_ctx is a pointer to save the current context,
and target_ctx points to a target context. This implementation
saves register values on top of the stack, so a context is
expressed by a single pointer to its call stack. A compiler
is responsible for maintaining values in caller-saved registers
before and after calling switch_ctx. Thus, switch_ctx just
needs to push callee-saved registers and an instruction address
to the stack (lines 2 and 3). After saving the current stack
pointer to self_ctx (line 4), the stack pointer is updated to that
of the target context (line 5). The target instruction address
is loaded into a caller-saved register (line 6) and callee-saved
registers are restored by popping them in reverse order (line
7). The target context then is resumed by jumping into the
target instruction address (line 8). All these operations are
accomplished with user-level instructions.

The switch_ctx routine is meant to be called by a scheduler
with target_ctx being the context of the target ULT to be
executed and self_ctx being its own context that is needed
to resume. This method, however, assumes a preexisting live
target_ctx; in other words, it assumes that the ULT context
has been initialized. In our model, switch_ctx is called only
when resuming the execution of a suspended ULT. In order to
account for the special cases of when ULT executes for the
first time and when it terminates, the switching mechanism

1Unlike OS-level threads, we do not manage signal masks and compiler-
level thread-local storage, so these are shared among ULTs running on the
same OS-level thread.

1 thread_local ctx_t *g_sched_ctx // g_sched_ctx is worker-local.
2 void scheduler() {
3 while (true)
4 if (thread_desc *thd <- pop_pool()) {
5 if (!thd->is_started) {
6 thd->is_started <- true
7 start_ctx(&g_sched_ctx, thd->stack, thd_wrapper, thd)
8 } else
9 switch_ctx(&g_sched_ctx, thd->ctx)

10 if (!thd->is_finished)
11 add_pool(thd) // return thd to pool.
12 }
13 }
14 void thd_wrapper(thread_desc *thd) {
15 thd->f(thd->arg) // thd->f and thd->arg are given by users.
16 thd->is_finished <- true
17 end_ctx(&thd->ctx, g_sched_ctx)
18 }

Fig. 5: Pseudocode of a fully fledged thread technique.
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Fig. 6: Flow of fork-join without a suspension (Full).

is split into two methods, start_ctx and end_ctx, for starting
and finishing contexts, respectively (Figure 4). The start_ctx

routine is meant to execute a ULT for the first time on a fresh
stack and to start the function f given as an argument (line 7).
The end_ctx routine is called by a terminating ULT to resume
the target context (i.e., a scheduler’s context) and discards the
current context, which is no longer used.

Based on these three functions, we describe an implementa-
tion of Full as presented in Figure 5. Assume that a scheduler
gets a ULT from a pool and starts it. The scheduler invokes
the ULT with start_ctx (line 7) if the ULT has not been
executed yet or switch_ctx if it has been suspended (line 9).
Since the scheduler context is properly saved in g_sched_ctx

by start_ctx and switch_ctx, Full ULTs can yield and return
to a scheduler at any time by restoring g_sched_ctx. This
model assumes a preallocated private stack for the ULT before
executing it for the first time (thd->stack at line 7). A wrapper
function, thd_wrapper, is used to call end_ctx on completion
(shown at line 17), since a Full thread spawned with a user-
level context switch cannot simply resume the scheduler with
a standard return statement.

Management of independent call stacks and callee-saved
registers enables Full to suspend. However, as we can see when
comparing Figure 6 with Figure 2, the following overheads
are incurred even if threads do not happen to suspend.

1. Save callee-saved registers and a stack pointer when a
ULT is invoked (start_ctx).

2. Restore callee-saved registers and a stack pointer when a
ULT finishes (end_ctx).

3. Manage call stacks for thd->stack.
Ultimately, these additional operations make Full slower than
RtC when threads never suspend.

C. Trade-Off between Capabilities and Performance
As we discussed, Full and RtC have a trade-off relationship

between thread capabilities and their overheads. To gain insight
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Fig. 7: Fork-join overheads on an Intel Haswell machine. RtC
shows the performance at S = 0% because RtC cannot suspend.

into the raw performance gap between the two methods, we
ran a microbenchmark that repeats 5,000 iterations where
each iteration creates and joins a set of 128 empty ULTs.
Furthermore, each ULT has an S% chance of suspending.
We ran the benchmark on a single core of an Intel Haswell
processor (the detailed experimental environment is described
in Section IV). Figure 7 shows the fork-join overhead with
respect to the suspension probability. Each data point is the
arithmetic mean of all iterations across 50 runs. Since RtC
cannot suspend, we show only a horizontal line representing
no suspension for reference. We observe that the suspension
probability increases the fork-join cost linearly for Full. More
important, at S = 0%, the overhead of Full is 1.75x higher
than that of RtC even though threads never suspend.

Ideally, Full would perform similarly to RtC when suspension
does not occur. Prior work has not made clear whether the
additional costs incurred by Full in this case are compulsory in
order to support the suspension capability. In the next section
we address this issue by performing an in-depth investigation
of fundamental costs between the two methods.

III. TOWARD MINIMAL OVERHEAD WITH DYNAMIC
PROMOTION

This section aims at bringing insight into the extra costs of
implementing the fully fledged thread and deriving techniques
that avoid them when the suspension probability is low. We
proceed by incrementally trimming down costs at creation and
execution time and moving them toward the suspension path.
As will be seen, some of these techniques incur programming
constraints that limit their applicability. These restrictions,
however, are significantly less constraining than RtC, and we
encourage their adoption. The following analysis relies on the
microbenchmark explained in the preceding section. Complete
data, including performance and instructions, is summarized
in Figure 13 and Figure 14 at the end of this section.

A. Lazy Stack Allocation

In the implementation of Full, we considered a ULT private
stack preallocated before the first invocation. Such an eager
approach is an optimization often encountered in practice. It
allows the runtime to reduce memory management overheads by
allocating together thread descriptors and their corresponding
stacks. A large difference between Full and RtC is that an
RtC-type thread is run on top of the scheduler’s stack, whereas
a Full-type thread has its own stack space allocated at creation

time. Full accesses a different call stack region on every spawn,
thus incurring 1.7x more L1 cache misses when S is 0%.

However, we do not always need independent stack regions
for every thread; only simultaneously active ULTs require
independent stacks. To improve cache locality, we devise a lazy
stack allocation (LSA) method that assigns stacks at execution
time. Since most ULTs are forked and joined sequentially when
the suspension probability is low, a call stack can be reused
by assigning it on invocation. The other flow is the same as
that of Full presented in Figure 6.

We find that LSA shows slightly higher performance than
does Full by successfully reducing L1 cache misses; moreover,
the number of misses gets close to that of RtC. LSA potentially
adds five instructions to manage a stack, however, because Full
allocates a stack and a thread descriptor at the same time on
creation, whereas LSA allocates them separately. In addition,
at high suspension probability, most ULTs have unique stacks,
and the effect of stack reuse gets diminished. Therefore, LSA
degrades performance at high suspension probability.

B. Context Switching on Return

A large performance gap still remains between LSA and RtC.
User-level context switches (switch_ctx) inflate the number
of instructions. The first context switch is indispensable for
saving a context of a scheduler so that a scheduler can be
resumed at any point. When a created thread does not suspend
and straightforwardly returns to a scheduler, however, the
last context switch does not need to restore callee-saved
registers because these values are restored at the end of the
spawned function. In other words, a user-level context switch
on spawning is inevitable, but one on joining can be simplified
if a spawned thread never suspends.

A return on completion (RoC) removes the second context
switch by replacing it with a standard return procedure. It
resumes a scheduler by a standard return procedure when
a thread is completed without suspensions. Figure 8 shows
the pseudocode of a function invoking threads, and Figure 9
illustrates the flow.

1 void switch_ctx_RoC_invoke(ctx_t **self_ctx, void *stack,
2 void (*f)(void *), void *arg) {
3 Push callee-saved registers
4 Push an instruction address
5 *self_ctx <- stack_pointer
6 stack_pointer <- stack
7 f(arg) // a user function is directly called.
8 return
9 }

10 void switch_ctx_RoC_return() {
11 thread_desc *thd <- get_self_thread()
12 end_ctx(&thd->ctx, g_sched_ctx)
13 }

Fig. 8: Pseudo assembly code of a context switch in RoC.
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The first part saves callee-saved registers and calls a thread
function f at line 7. If a created thread does not suspend, this
function just returns to a caller with a return instruction.2 The
explicit management of callee-saved registers is not needed
because callee-saved registers are maintained in f. If a thread
suspends, the context of the calling scheduler is modified
when resumed, making callee-saved registers preserved by f

outdated. By changing a return address, we solve this issue
without adding an extra branch in switch_ctx_RoC_invoke.
When a thread suspends for the first time, it calculates an
address pointing to a return address of switch_ctx_RoC_invoke

from a ULT stack space and rewrites the return address
to switch_ctx_RoC_return so that switch_ctx_RoC_invoke can
jump to switch_ctx_RoC_return at line 8 and restore callee-
saved registers stored in g_sched_ctx. We note that a thread
needs to manipulate the return address only on the first
suspension, so the overhead after the first suspension becomes
the same as that of Full.

As a result, RoC keeps the number of L1 cache misses
low and successfully saves 27 instructions compared with LSA
when the suspension probability is 0% and therefore reduces
fork-join overheads by 35% compared with Full. However,
RoC worsens the performance at higher suspension probability
(13% worse when S is 100%) because of the complicated
control flow handling a return address.

C. Context Switching on Invocation

An RtC thread is still faster than other techniques when no
threads yield. RoC suffers from overheads of managing stacks
and contexts to restore a scheduler context if threads suspend.
If the scheduler has no state, however, we can discard a context
of the current scheduler (e.g., all local variables, data in the
stack frame) and freshly start a new one. We call this property
statelessness. Specifically, a stateless scheduler must have no
execution state preserved across thread invocation so that it
can be terminated while invoking a thread and newly started.
A few frameworks [8], [9], [10] have adopted this technique,
which we call scheduler creation (SC). SC removes the whole
cost of user-level context switches and stack management when
threads finish without suspending. When a thread does suspend,
however, this technique incurs additional costs to restart a
scheduler from the beginning of the function, although such
action is unnecessary if the scheduler context is properly saved.

Scheduler’s

stack
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stack
2. (body)

3. return

(Unused stack space)

1. call

• Call ULT.

• Run ULT body.

• Return to scheduler.

• Check if ULT has ever 

suspended.

1. 
2. 
3. 

Fig. 10: Flow of SC.

2This pseudocode assumes a return instruction that pops an instruction
address and jumps to that address and a certain calling convention. Although
our current implementation supports only x86-64 [17] and ARM64 [18], this
technique should be widely applicable to various calling conventions and
instruction sets.

Figure 10 shows how SC works. A thread function is called
on top of a scheduler’s stack. When a thread has never yielded,
in comparison with RtC, SC imposes no extra overhead except
a single branch to check whether a thread has suspended.
When an SC thread suspends for the first time, because a
parent scheduler that has called this thread directly cannot
be resumed, it spawns a ULT with a new stack and starts a
scheduler on top of it. At the same time, the thread is marked as
suspended in order to prevent the original parent scheduler from
resuming after the completion of this thread. This invalidation
mechanism maintains the number of active schedulers. We
note that from the second suspension SC threads become fully
fledged threads, so superfluous schedulers are not created. The
experiment shows that SC adds only two instructions for a
branch and achieves performance as high as RtC does when
threads do not suspend.

D. Overcoming the Stack Size Constraint

Although SC achieves high performance when S = 0%,
SC imposes two constraints. First, the scheduler needs to be
stateless because the context of the scheduler is possibly lost.
A carefully designed random work-stealing scheduler [19]
satisfies this property, while some schedulers managing counters
stored in local variables, for example, to select a victim of work
stealing or sleep when work stealing fails several times, are
not stateless. In addition, dynamically allocated heap memory,
exclusive locks, and file handles obtained in a scheduler must
be carefully managed so as not to lose track of them across
thread executions. Second, this technique runs a thread on top
of a stack of a scheduler, so the stack size of SC threads is
actually shared with that of a scheduler. Because we must
use the largest stack size among various types of threads in a
program, SC imposes an unnecessarily large stack size. This
problem becomes significant when one application has multiple
types of threads each of which requires a different stack size.
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Fig. 11: Flow of SS.

1 void switch_ctx_SS_invoke(ctx_t **self_ctx, void *stack,
2 void (*f)(void *), void *arg) {
3 Push an instruction address
4 *self_ctx <- stack_pointer
5 stack_pointer <- stack
6 f(arg) // a user function is directly called.
7 return
8 }

Fig. 12: Pseudo assembly code of a context switch in SS.

The second constraint derives from the fact that stacks are
shared between threads and schedulers. To address this, we
propose a threading technique that calls a thread on top of
an independent stack, hence the name stack separation (SS).
Figure 11 shows how SS works. SS does not save registers
while it runs a thread on a unique stack rather than on top of



TABLE I: Summary of threading techniques
No suspension Suspension ConstraintsChange

stacks?
# of register

managements? Overheads Rerun
scheduler? Overheads

Full (Fully Fledged Thread) Yes 2 Highest No Lowest No
LSA (Lazy Stack Allocation) Yes 2 ∧ No ∨ No
RoC (Return on Completion) Yes 1 No No
SS (Stack Separation) Yes 0 Yes Scheduler must be stateless.
SC (Stack Creation) No 0 Yes Highest Scheduler must be stateless. Stack size is shared.
RtC (Run to Completion) No 0 Lowest - - Suspension is not allowed.
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Fig. 13: Performance of the six methods on Haswell.

the scheduler’s stack. Because the context of a scheduler is not
fully saved, SS requires a stateless scheduler, as does SC. As
presented in Figure 12, a fork function run by a scheduler is
that of RoC (Figure 8) without a part saving registers. SS uses
the same technique that utilizes a general return mechanism in
nonsuspended cases.

Figure 133 shows the performance of the six threading
techniques, and Figure 14 summarizes the number of instruc-
tions for thread creation and joining. We can see that SS
achieves slightly worse performance than SC does since 14
instructions are added to manage stacks, as shown in Figure 14b.
When the suspension probability is high, SS shows better
performance than SC does, because a scheduler can reuse its
uniquely associated stack region, thus reducing cache misses,
as presented in Figure 13b.

E. Discussion

Table I summarizes the six threading techniques. We can
observe a performance trade-off with respect to suspension
probability. Full is slowest when the suspension probability
is low but achieves the highest performance when a thread
yields. In contrast, SC minimizes the fork-join costs but incurs
the highest suspension cost. LSA slightly reduces the fork-join
cost of Full to the detriment of a higher suspension cost. The
remaining dynamic promotion techniques perform closely to
RtC. From a programming perspective, Full, RoC and LSA

3Higher levels of caches do not suffer from cache misses in this experiment
because each ULT accesses a small portion of a call stack.
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Fig. 14: Instruction breakdown of the six methods on Haswell.

incur no constraints while the other techniques have various
limitations. SS and SC require stateless schedulers and SC
additionally puts a constraint on stack size. RtC guarantees
the lowest fork-join cost but incurs the highest programming
constraint by giving up the suspension capability.

From a user perspective, a threading technique can be
selected as follows. If the user knows that most threads suspend,
Full is the best choice. On the other hand, if threads never
suspend, RtC is preferable. If the user knows in advance that
few threads yield, LSA, RoC, SS, or SC should be used. When
schedulers are not stateless, RoC is the best method because
RoC has minimum fork-join costs among threading techniques
with the suspension feature. SS and SC are also useful with
stateless schedulers. Usually, if a program has a single task
type, SC is the best choice since the user does not need to use
different stack sizes. The user can choose SS if a program has
various types of threads requiring differently sized stacks.

If the user has no idea about the application behavior, RoC
is recommended. RoC is a suspendable threading technique
without any constraints and performs well when suspension
is less likely. Nevertheless, Full, for example, shows higher
performance when most ULTs suspend, while threading over-
heads in such cases tend to be negligible because of time-
consuming operations causing suspensions (e.g., high com-
munication contentions). Automatic selection of thread types,
through runtime adaptation or compile-time code analysis, is a
promising research direction. Given the difficulty of automating
the identification of threading capability requirements for the
more constraining methods (SS, SC, and RtC), however, a
separate study outside the scope of this paper is warranted.
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(b) Cycles per fork-join on KNL
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(c) Cycles per fork-join on ARM64

Fig. 15: Cycles per fork-join (N = 128).

F. Coverage of Our Techniques

Section III assumes parent-first schedulers. A natural ques-
tion is whether other techniques are possible.

For Parent-First Schedulers. To discuss the coverage of
our techniques, we focus on management of registers and
stacks, which has a major impact on costs of a user-level
context switch. We described that Full allocates a stack for
each ULT and explicitly handles callee-saved registers twice
on fork and join. Reduction of these operations to alleviate this
overhead is straightforward. As shown in the second and third
columns in Table I, these operations are eliminated one by
one from Full and LSA to SC. We note that we miss threading
techniques that do not change stacks but explicitly maintain
callee-saved registers (i.e., [“No”, “2”] and [“No”, “1”]). Such
techniques have been proposed [21], [22], [23]. However, these
techniques are not suitable for library approaches because
the techniques need compiler modifications [22]. We discuss
this problem further in Section V. In terms of the number of
these operations, all the techniques to construct a parent-first
threading library are considered in our paper, although other
parts—including designs of schedulers, thread queues, and
memory pools—might leave room for improvement.

For Child-First Schedulers. Our related work includes
studies based on a child-first scheduling policy [14]. Not all
the methods are directly associated in the child-first case. SS
and SC require stateless parent functions, although in the child-
first case parent functions invoking children are user-written
functions, not a scheduler. Losing the context of parents often
loses the computational results, so the constraints of those two
techniques are tighter and less practical. Since a created thread
with the new stack is immediately executed in the child-first
scheduling, there is no distinction between LSA and Full. We
note that, as with the parent-first case, threading techniques
that do not alter stacks but instead push and pop registers need
compiler help [21], [22], [23]. RoC is applicable and promising.
Its evaluation is listed as one of our future projects.

IV. EVALUATION AND ANALYSIS

In this section, we evaluate the performance of the methods
with a microbenchmark and three fine-grained parallel appli-
cations. All the methods were implemented on Argobots [6],
a threading library adopting a parent-first scheduling policy.
Table II shows the experimental environment. We compiled all
the programs with Intel Compiler 17.2.174 for Haswell and
KNL and with GCC 4.8.5 for ARM64, with the -O3 compilation

TABLE II: Experimental environment
Name Haswell KNL ARM64
Processor Intel Xeon E5-2699

v3
Intel Xeon Phi
7210

AMD Opteron
A1120

Architecture Haswell Knights Landing ARMv8-A
Frequency 2.3GHz 1.3GHz 1.7GHz
# of sockets 2 1 1
# of cores 36 64 4
# of HWTs 72 256 4
Memory 123GB 198GB 8GB
OS Red Hat 7.4 Red Hat 7.4 openSUSE 42.2

flag. The stack size of ULTs was set to 16 KB. The scheduler’s
stack size was set to the same size as well, which is beneficial
for SC. We used the arithmetic mean and the standard deviation
to obtain an average and the error bar, respectively.

A. Overheads of Fork-Join

The fork-join microbenchmark that we used repeats creating
N threads and joining all N threads 5, 000 times on a single
worker. At each iteration, exactly n threads randomly dis-
tributed in N threads suspend once. The suspension probability
S is calculated by n/N . Because RtC cannot suspend, the
result of RtC is valid only at n = 0. We ran the benchmark 50
times on Haswell, KNL, and ARM64 with different n while
fixing N to 128. Lightweight private pools [6] were used so
that we could evaluate only the threading overheads.

Figure 15 shows the results on Haswell, KNL, and ARM64.
Even though we use the number of cycles as a metric, the
absolute performance on KNL is worse because KNL is a
less powerful superscalar processor. However, Haswell, KNL,
and ARM64 show similar performance except for LSA; Full
is slowest and SC fastest when S is low, while Full shows
the highest performance when S is high. LSA is not faster
than Full on KNL and ARM64 even at S = 0%. As discussed
in Section III-A, LSA increases the number of instructions to
reduce cache misses, so LSA lowers performance on KNL and
ARM64, which have different instruction and memory costs
from those of Haswell.

We evaluate three fine-grained parallel applications, reflecting
three situations where fine-grained ULTs are useful.

KMeans Parallel programs expected to execute other ULTs
if running ULTs fail to acquire locks.

ExaFMM Recursive parallel programs in which most ULTs
do not suspend because they are leaves, while
nodes need suspension to wait for other ULTs.

Graph500 Parallel programs expected to run other ULTs if
the current ULTs need to wait for communications
(although they are less likely to happen).



B. KMeans over OpenMP

OpenMP is the most popular parallel programming system
for multithreading because of its rich APIs and portability.
Several implementations, including OmpSs [24] and Intel
OpenMP [25], utilize ULTs in OpenMP, especially as tasks.
Since OpenMP’s tasks and threads are suspendable (i.e.,
taskyield and barrier), they have been created as Full-type
ULTs. As we pointed out in this paper, however, not all parallel
units require suspension capability. The dynamic promotion
techniques can exploit the benefits from the nonsuspension
case as well as RtC. We used KMeans for evaluation.

KMeans is a well-known machine learning algorithm for
partitioning N points into K groups. Our benchmark is based
on a simple KMeans implementation in NU-MineBench [26].
This algorithm works as follows. Initially, a randomly dis-
tributed center is assigned to each of K clusters. A point is
considered belonging to the cluster whose center is nearest to
that point. The algorithm repeats updating cluster centers to
centroids of their points until the positions of the centroids get
stable. In our program, we create as many as N threads each
of which is associated with a point and updates a centroid of
the nearest cluster. To parallelize calculation of new centroids,
we follow a simple technique with critical sections used by
Chabbi et al. [27]. Each thread updates the partial sums of
centroids shared among workers, and a master thread sums up
the partial results at the end of each iteration. The partial sums
are protected by locks to avoid conflicts.

We artificially change the number of locks L to protect
partial sums in order to control the lock granularity. When
L = 1, there is only a single global lock for all clusters, so
only one ULT can update a partial sum at the same time.
When L = K, locks are prepared for every cluster, so no
contentions occur unless multiple ULTs try to update a partial
sum of the same cluster. L can be set to more than K by
making replicates of partial sums per cluster, although doing
so increases the reduction cost at the end of iterations. When
L = K ·W , where W is the number of workers, since each
worker has a replicate of all clusters, ULTs can update the
partial sums without contention. When 1 < L < K, we assign
a lock to K/L partial sums. When K < L < K ·W , we create
L/K replicates of partial sums per cluster and make K ·W/L
workers share the replicates and their locks.

We parallelized the original KMeans with OpenMP by a
doubly nested parallel loop; the outer loop creates 64 OpenMP
threads, and the inner loop spawns tasks in a finest-grained
manner. We customized BOLT [28], an OpenMP runtime
system over Argobots, to map OpenMP threads and tasks
to ULTs based on the five suspendable threading techniques.4

The kernel was rearranged to exploit vector units in KNL. We
used the first 10% data of KDD Cup 1999 [29]. Our dataset
contains N = 5.0× 105 points each of which consists of 41
floating-point features.5 The number of clusters K is given as

4The environmental variable is used to change a thread type. Finer-grained
thread type control in OpenMP runtime system is part of our future work.

5We arbitrarily mapped string-typed values to floating-point values.
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Fig. 16: Throughput and suspension probability (S) of SC of
KMeans using 64 cores.

24 in the original problem statement.
Figure 16 shows the average throughputs of 20 executions

with 64 workers. As the number of locks increases, the suspen-
sion probability declines; and therefore SC, SS, RoC, and LSA
achieve better performance than Full does. The performance
difference among threading methods diminishes where L is
less than 100 or S is higher than 40%. Our microbenchmark
indicates that Full achieves the best performance at higher
suspension probability, but the performance improvement
becomes negligible as the locking overheads become dominant.
This result demonstrates that the dynamic promotion techniques
can exploit performance of nonsuspension cases without losing
the suspension functionality, while the integration with other
parallel systems is easy.

C. ExaFMM

ExaFMM [30] is a highly optimized fast multipole method
that computes an N-body problem with O(N) complexity.
ExaFMM has a kernel recursively parallelized by ULTs [31]
to exploit modern many-core CPUs. A tree is traversed in a
divide-and-conquer manner, and leaf threads calculate actual
forces. Node threads in a tree need a suspension feature so that
they can wait for child threads, but leaf threads never suspend
because they just contain computations. The most efficient
way seems to be to create leaf threads as RtC and nodes
as suspendable threads (e.g., Full). However, this approach
not only burdens programmers but also requires identifying
leaf threads on creation, incurring additional overheads. The
dynamic promotion techniques explained in the paper can
reduce the programmer load and achieve good performance.

We parallelized ExaFMM with our proposed techniques and
ran it 10 times on Haswell and KNL. The kernel was vectorized
by hand. To reduce nonleaf threads, we collapsed intermediate
nodes in the spawn tree; those nodes do not have computation
but only decompose work. We give --ncrit 16 -t 0.15 -P 4

--dual -n 100000 as arguments and change --nspawn to keep
the number of created ULTs per worker constant (within 3%
of error), while --nspawn 60 is given when 36 and 64 workers
are used on Haswell and KNL, respectively. We measured the
performance of the tree traversal, which is responsible for more
than 90% of the total execution time.

Figure 17 plots the performance with different numbers of
workers. The result shows that SC, SS, RoC, and LSA achieve
better performance than Full does on both Haswell and KNL:
6% at maximum with 36 cores on Haswell and 15% on KNL.
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Fig. 17: Relative performance of ExaFMM. The baseline is
the performance of Full with a single worker. The suspension
probability (S) was up to 5%.

KNL shows larger gaps between the various methods because
its wider SIMD units reduce kernel computation time while
the absolute overhead of context switch is larger (Figure 15),
which accentuates thread management overheads. Performance
differences among methods except for Full are small; for
example, 4% between LSA and SC on KNL.

We note that nearly 1− 1
k% of threads in a k-ary tree are

leaves.6 The microbenchmark shown in Figure 15 indicates
that the dynamic promotion techniques perform better than
Full does when the suspension probability is less than 50%.
Since 50% of threads become leaf nodes even when the shape
of the task tree is binary, the dynamic promotion is suitable
for parallel recursive algorithms.

D. Distributed Graph500

Graph500 [32] runs a breadth-first graph traversal on
distributed computing environments. In this section, we refer
to a compute node as an MPI process or just a process
since we use an MPI library and assign one process per a
compute node. Each process has a part of the whole graph,
so interprocess communication is necessary in order to visit
vertices in a graph owned by other processes. In each iteration,
processes visit adjacent vertices and, if they are not locally
stored, send messages to other processes to update them.
Simultaneously, local vertex information must be updated upon
messages from others. A buffer length B is the number of
visit messages per process that are temporarily stored locally
to manually aggregate communications. Since the performance
of Graph500 is sensitive to communication overheads, hybrid
parallelism is often used to reduce the local communications
in a compute node. MPI+Thread, where ULT is used as an
implementation of “Thread,” has been known to achieve good
performance for finer-grained parallelism on a distributed
system [33] since, when an MPI function blocks, a worker
can efficiently switch to another thread and process it. Even
nonblocking MPI functions (e.g., MPI_Isend and MPI_Test)
might sometimes block inside a runtime in order to take
a lock of communication resources shared among multiple
workers, although the behavior is implementation dependent.

6Denote the number of nodes in a tree N and the number of leaves n.
(N,n) is (1, k) when N = 1 and 1 leaf can be replaced with 1 node and k
leaves, so (N,n) is in general (N,N(k − 1) + 1). The ratio of leaf threads
is therefore n

N+n
≈ 1− 1

k
, when N is large.

TABLE III: Experimental environment of Graph500
Processor Intel Xeon Phi 7230 Architecture Knights Landing
Frequency 1.3 GHz # of cores 64
# of HWTs 128 Memory 128 GB
OS Red Hat 7.4 Interconnect Intel Omni-Path
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Fig. 18: TEPS and suspension probability (S) of SC of
Graph500 using 1K cores.

The dynamic promotion can alleviate threading overheads in
cases where ULTs do not call MPI functions or where called
MPI functions never suspend inside.

We modified the multithreaded Graph500 implementa-
tion [34] to use our optimized Argobots and Argobots-aware
MPICH [35]. To focus on threading overheads, we associated
one visit with a ULT. The buffer length B was changed to
control the communication granularity; with a larger B, more
memory is consumed, but fewer communications are required.
We set a scale factor to 26, so a created graph has 226 vertices.
We executed this benchmark on 16 KNLs described in Table III.
One compute node is associated with a single MPI process
running 64 workers, so 1,024 workers are used in total. We
ran the benchmark five times and show the average TEPS and
the suspension probability of SC. The results indicate that the
larger B coarsening the communication granularity improves
performance on the whole, while the dynamic promotion
techniques outperform Full as S approaches 0%. Full shows
better performance with a smaller B, but it worsens the overall
performance and diminishes the benefits of lightweight ULTs.

V. RELATED WORK

Numerous parallel libraries and parallel languages have been
developed to efficiently support high-level parallel program-
ming languages or APIs. The explicit suspension feature is
not supported, however, although not all of them use RtC.
For example, Cilk [1], [36], Intel CilkPlus [2], and Intel
TBB [37] cannot manually suspend. Nevertheless, several user-
level threading libraries, such as Qthreads [3], Nanos++ [4],
MassiveThreads [5], and Argobots [6], support suspension.
We analyzed the costs and features of lightweight threading
techniques that threading libraries can adopt. Most previous
papers introducing the libraries and systems we listed above
have not focused on threading techniques but have instead
focused on other characteristics such as portability, usability,
abstraction, and performance improved by other optimizations
(e.g., locality-aware scheduling). The performance of various
parallel systems has been also intensively evaluated in prior
work [38], [39], but such work has measured only overall
performance and lacked a cost analysis of different threading



methods. In this section, we briefly discuss notable studies out
of countless work using ULTs in terms of threading techniques.

Register Saving: Some previous studies adopting a child-
first scheduling policy, including LazyThreads [21], Stack-
Threads/MP [40], [22] and Fibril [23], proposed techniques
that avoid manipulation of stack pointers and just save (or
clobber) callee-saved registers. Their approaches are based on
the following premises.

1. All local variables in the thread stack are addressed by a
frame pointer instead of a stack pointer.

2. The stack is not shrunken dynamically in the midst of a
function.

3. All threads are joined in a function creating them.
If these premises are satisfied, a thread can call a child function
on top of the parent stack after saving registers. The approach
obviously works well if work stealing does not happen. When
another worker steals a continuation, a thief allocates a new
stack, restores the original registers, and resumes the execution.
A frame pointer points to the original stack, but a stack pointer
points to a new stack allocated by a thief worker. Premise 1
guarantees that local variables previously used are referenced
by a frame pointer so that a thief can access them. A thief can
call a new function on top of the newly allocated stack based
on a stack pointer without violating the child stack.

In addition to premise 3, narrowing the expressiveness of
parallelization, the premises require compiler modifications.
Taura et al. [22], for example, discussed necessary modifications
to GCC for premise 1 and premise 3. Lazy Threads [21]
extensively modified a compiler, which also utilizes this method
without any difficulties. Yang and Mellor-Crummey [23] tried to
address this problem without compiler modifications by adding
a special compiler flag, -fno-omit-frame-pointer, provided
by GCC. Unfortunately, the current widely used compilers
including GCC do not provide a flag that guarantees that all
local variables are addressed by the frame pointer. In order
to avoid compiler modification, the threading techniques we
present in this paper do not use this approach.

Stack Separation: In contrast to the approach saving
registers, a few studies have proposed methods to omit register
manipulations. However, their approaches are different from
ours; they adopt new calling conventions that have no callee-
saved registers except a register representing a stack pointer
and instruction address (e.g., Intel CilkPlus [41]). Context
switches therefore can be done by changing a stack pointer
and an instruction address. In contrast, our SS does not modify
a compiler to change calling convention.

Scheduler Creation: A few papers have mentioned sched-
uler creation. Chores [8] and Wool [9], both of which are parent-
first threading libraries, have adopted this method to reduce
overheads according to a low suspension probability scenario.
Recently, Concurrent Cilk [10], which is a child-first threading
library, utilized this technique to integrate a suspension feature
into Intel CilkPlus. Nevertheless, the past work has not
offered an in-depth comparison with other threading techniques.
Moreover, their approaches handle threads that suspend once

in a special manner, so suspended threads are differently
scheduled from threads that do not suspend. Our techniques
are implemented with unified pools and schedulers so that they
are uniformly scheduled.

Run-to-Completion Threads: In order to save the cost
of user-level context switch, numerous studies—including
Filaments [7], Qthreads [3]7 and Argobots [6]—support a run-
to-completion thread. It is efficient in both cost and memory,
but its constraint limits the applicable cases. For instance, a
run-to-completion thread is not feasible for programs used in
our evaluation. In particular, ExaFMM and Graph500 might
cause a deadlock by replacing a suspension with a spin loop.

Other Threading Techniques: Several other lightweight
threading techniques have also been developed that cannot be
classified into the categories above. For example, Sivaramakr-
ishnan et al. [42] proposed MultiMLton, in which function
stacks are relocatable. This technique might be applicable
to pure function languages, although it cannot support the
general C/C++ code. Cilk-M [15] enables stack copying by
modifying operating systems to expose the same address space.
The approach is not generally applicable, however, since OS
modification is required.

VI. CONCLUDING REMARKS

This paper investigates the full spectrum of user-level
threading techniques between Full and RtC. Specifically, we
analyze six threading techniques and discuss their costs and
constraints. Full shows the best performance at high suspension
probability. LSA and RoC are techniques with the same
threading capability as Full, but they can reduce threading
overheads up to 5% and 30% on Haswell when suspension
probability is low. SC is as fast as RtC when threads do
not suspend, while additional constraints such as stack size
limitations and scheduler requirements are imposed. SS is
a technique to overcome the stack size limitations at a 5%
additional cost compared with SC on Haswell. We implemented
these methods in the same runtime system and measured
their performance on three processors that have different
architectures. We also evaluated the performance of three fine-
grained applications and demonstrated potential performance
improvement by exploiting a wide range of trade-offs.

Our goal is a comprehensive understanding of lightweight
threading techniques for threading libraries. This work specifi-
cally focuses on costs of context switches and stack manage-
ment, while other factors such as schedulers, memory allocators,
and thread pools might be left suboptimal. Investigating their
fundamental overheads is a direction of our future work.

ACKNOWLEDGMENT

We gratefully acknowledge the computing resources provided
and operated by LCRC and JLSE at ANL. This material is
based upon work supported by the U.S. Department of Energy,
Office of Science, under Contract DE-AC02-06CH11357, and
by the Exascale Computing Project (17-SC-20-SC).

7Qthreads executes a thread on top of the scheduler’s stack when
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A. ARTIFACT DESCRIPTION: LESSONS LEARNED FROM
ANALYZING DYNAMIC PROMOTION FOR USER-LEVEL

THREADING

A.1 Abstract

We explain how to obtain and install the benchmarks and
dependent libraries and run experiments described in the paper.

A.2 Description

The core of the proposal is implemented in Argobots. The pa-
per shows the results of four benchmarks: a microbenchmark to
evaluate fork-join costs (Yield), k-means clustering parallelized
by OpenMP (KMeans), a fast multipole method (ExaFMM),
and a distributed breadth-first graph traversal (Graph500). The
experiments were performed on four environments: Haswell,
KNL, ARM64, and KNL_Cluster. Table IV summarizes the
environments, and Table V shows the correspondence between
benchmarks and environments evaluated in the paper.

A.2.1 Checklist (artifact metainformation):
• Algorithm: Lightweight user-level threading techniques

described in the paper. Benchmarks include k-means
clustering (KMeans), a fast multipole method (ExaFMM),
and a distributed breadth-first graph traversal algorithm
(Graph500).

• Program: C/C++ code.
• Compilation: Intel C/C++ Compiler 17.2.174 for Haswell

and KNL, GCC 4.8.5 for ARM64, and Intel C/C++
Compiler 17.0.4 for KNL_Cluster.

• Hardware and runtime environment: See Table IV.
• Experiment workflow: Download and compile libraries

and benchmarks and run test scripts.
• Experiment customization: Change the configuration

parameters for compilation, or give different arguments
at runtime.

A.2.2 How software can be obtained (if available): All
libraries, benchmarks, and scripts are available at
http://argobots.org/files/2018/08/sc18_dynamic_promotion_material.tar_.gz.

A.2.3 Hardware dependencies: The current implementation
supports only x86/64 and ARM-64 machines adopting the
corresponding System V ABIs. The instruction analysis might
be difficult on machines where Intel SDE does not work.
Argobots-aware MPICH should work in any environments
supported by the original MPICH, while our performance was
obtained on KNL clusters connected with Intel Omni-Path.

A.2.4 Software dependencies: Some benchmarks and anal-
yses rely on uncommon libraries. All of them are installed
just by running download.sh, while Intel SDE and Intel C/C++
Compilers must be manually installed. The PSM2 library is
required to utilize Intel Omni-Path. Our scripts contain some
general commands such as git, cmake, automake, and python.

A.2.5 Datasets: KMeans uses KDD Cup 1999, which is
publicly available. The download process is also automated.

A.3 Installation

Since our experiments require several libraries and bench-
marks, it is cumbersome to download and build them one

TABLE IV: Experimental environments used in the paper
Name Haswell KNL ARM64 KNL_Cluster
Processor Intel Xeon

E5-2699 v3
Intel Xeon
Phi 7210

AMD
Opteron
A1120

Intel Xeon
Phi 7230

Architecture Haswell Knights
Landing

ARM v8 -A Knights
Landing

Frequency 2.3 GHz 1.3 GHz 1.7 GHz 1.3 GHz
# of nodes 1 1 1 16
# of sockets 2 1 1 1 x 16
# of cores 36 64 4 64 x 16
# of HWTs 72 256 4 256 x 16
Memory 123 GB 198 GB 8 GB 128 GB
OS Red Hat 7.4 Red Hat 7.4 openSUSE

42.2
Red Hat 7.4

Interconnect - - - Omni-Path

TABLE V: Correspondence between benchmarks and environ-
ments described in the paper

Yield Yield
(analysis)

KMeans ExaFMM Graph500

Haswell D D D

KNL D D D

ARM64 D

KNL_Cluster D

by one. Except for compilers (i.e., icc), Intel SDE and the
PSM2 library, all the libraries and datasets are available in the
tar ball or obtained by running download.sh. The compilation
process is automated by scripts; running build.sh xxx builds a
benchmark of xxx and all the necessary libraries. Users should
read those scripts to know what parameters are passed. For
example, to set up everything on an Intel Xeon Phi cluster,
one types the following.

$ compiler=icc
$ arch=intel
$ sh download.sh $compiler $arch
$ sh build.sh all

A.4 Experimental workflow

All the four benchmarks are run by eval_xxx.sh where
xxx is a benchmark name. Log files are written to log/xxx

directories. Those scripts can be executed locally or as a
batch job. Embedded parameters are by default configured
for the environments discussed in the paper (e.g., the number
of threads). We recommend running Graph500 on multiple
nodes, but the others are for a single node. The following
commands execute Yield, Yield with detailed performance
analysis, KMeans, ExaFMM, and Graph500, respectively.

$ sh eval_yield.sh
$ sh eval_yield_sde.sh
$ sh eval_kmeans.sh
$ sh eval_exafmm.sh
$ nprocs=16
$ sh eval_graph500.sh $nprocs

A.5 Evaluation and expected results

Log files in the log directory contain all the results.

A.6 Experiment customization

Experiments can be easily customized by changing parame-
ters embedded in compilation scripts and execution scripts.


